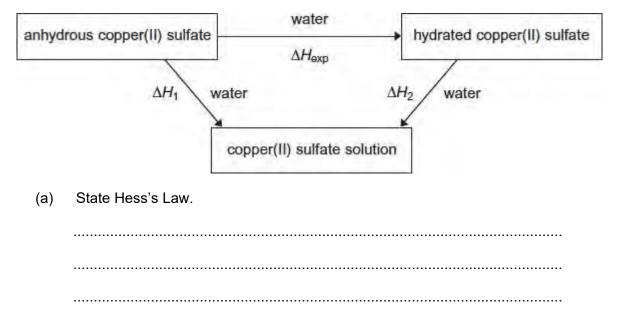
Q1. The alcohol 2-methylpropan-2-ol, (CH₃)₃COH, reacts to form esters that are used as flavourings by the food industry. The alcohol can be oxidised to produce carbon dioxide and water.

A student carried out an experiment on a pure sample of 2-methylpropan-2-ol to determine its enthalpy of combustion. A sample of the alcohol was placed into a spirit burner and positioned under a beaker containing 50 cm³ of water. The spirit burner was ignited and allowed to burn for several minutes before it was extinguished.

The results for the experiment are shown in **Table 1**.

Table 1

Initial temperature of the water / °C	18.1
Final temperature of the water / °C	45.4
Initial mass of spirit burner and alcohol / g	208.80
Final mass of spirit burner and alcohol / g	208.58


(a)	Use the results from Table 1 to calculate a value for the heat energy released from the combustion of this sample of 2-methylpropan-2-ol. The specific heat capacity of water is 4.18 J K $^{-1}$ g $^{-1}$. Show your working.
(b)	Calculate the amount, in moles, of 2-methylpropan-2-ol burned in the experiment. Hence calculate a value, in kJ mol ⁻¹ , for the enthalpy of combustion of 2-methylpropan-2-ol. Show your working.
	(If you were unable to calculate an answer to part (a), you should assume that the heat energy released was 5580 J. This is not the correct value.)

(2)

T	(011) 001	•	propan-2-ol i		
	, ,	H(I) + 6O ₂ (g) ——		.,	
i able	2 contains some st		f formation d	ata.	
		Table 2		ı	
		(CH ₃) ₃ COH(I)	O ₂ (g)	CO ₂ (g)	H ₂ O(I)
	∆ <i>H</i> _f ↔ / kJ mol⁻¹	-360	0	-393	-286

		(1
(e)	Suggest one improvement that would reduce errors due to heat loss in the student's experiment.	
		(1
(f)	Suggest one other source of error in the student's experiment. Do not include heat loss, apparatus error or student error.	
	(Total 11 ma	(1 arks

Q2.A student used Hess's Law to determine a value for the enthalpy change that occurs when anhydrous copper(II) sulfate is hydrated. This enthalpy change was labelled $\Delta H_{\mbox{\tiny exp}}$ by the student in a scheme of reactions.

			(1)
(b)		e a mathematical expression to show how ΔH_{exp} , ΔH_{1} and ΔH_{2} are related to other by Hess's Law.	
			(1)
(c)		the mathematical expression that you have written in part (b), and the data values for the two enthalpy changes ΔH_1 and ΔH_2 shown, to calculate a value H_{exp}	
		= -156 kJ mol ⁻¹ = +12 kJ mol ⁻¹	
			(1)
(d)	deior	student added 0.0210 mol of pure anhydrous copper(II) sulfate to 25.0 cm³ of nised water in an open polystyrene cup. An exothermic reaction occurred and emperature of the water increased by 14.0 °C.	
	(i)	Use these data to calculate the enthalpy change, in kJ mol ⁻¹ , for this reaction of copper(II) sulfate. This is the student value for ΔH_1	
		In this experiment, you should assume that all of the heat released is used to raise the temperature of the 25.0 g of water. The specific heat capacity of water is 4.18 J K $^{-1}$ g $^{-1}$.	

	(ii)	Suggest one reason why the student value for ΔH_1 calculated in part (cless accurate than the data book value given in part (c).	l)(i) is
			(1)
(e)	Sug	gest one reason why the value for $\Delta H_{\mbox{\tiny exp}}$ cannot be measured directly.	
	(Ext	ra space)	
			(1) (Total 8 marks)

Q3.Methanol (CH₃OH) is an important fuel that can be synthesised from carbon dioxide.

(a) The table shows some standard enthalpies of formation.

	CO ₂ (g)	H₂(g)	CH₃OH(g)	H₂O(g)
ΔH _f ⁹ /kJ mol⁻¹	- 394	0	– 201	- 242

(i) Use these standard enthalpies of formation to calculate a value for the standard enthalpy change of this synthesis.

CO ₂ (g)	+	3H₂(g) =	CH₃OH(g)	+	$H_2O(g)$	

		(Extra space)	
			(3)
			(0)
	(ii)	State why the standard enthalpy of formation for hydrogen gas is zero.	
			(1)
(b)		te and explain what happens to the yield of methanol when the total pressure is eased in this synthesis.	
CO₂(g)	+	$3H_2(g)$ \longrightarrow $CH_3OH(g)$ + $H_2O(g)$	
	Effe	ct on yield	
	Exp	anation	
	(Ext	ra space)	
			(3)

(c) The hydrogen required for this synthesis is formed from methane and steam in a reversible reaction. The equation for this reaction is shown below.

Effe	ct on yield
Expl	anation
Ext	ra space)
	methanol produced by this synthesis has been described as a carbon-neutral
uel.	
uel.	State the meaning of the term <i>carbon-neutral</i> .
uel.	State the meaning of the term <i>carbon-neutral</i> .
uel.	State the meaning of the term <i>carbon-neutral</i> .
uel.	State the meaning of the term <i>carbon-neutral</i> .
The uel. (i)	State the meaning of the term <i>carbon-neutral</i> .
uel.	State the meaning of the term carbon-neutral. (Extra space)
uel.	State the meaning of the term carbon-neutral. (Extra space)

 $CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g)$ $\Delta H = +206 \text{ kJ mol}^{-1}$

CO ₂ (g)	+ $3H_2(g)$ \longrightarrow $CH_3OH(g)$ + $H_2O(g)$	
	Use this equation and your answer to part (d)(ii) to deduce an equation to represent the overall chemical change that occurs when methanol behaves as a carbon-neutral fuel.	
	Equation	(1)
(e)	A student carried out an experiment to determine the enthalpy change when a sample of methanol was burned.	
	The student found that the temperature of 140 g of water increased by 7.5 °C when 0.011 mol of methanol was burned in air and the heat produced was used to warm the water.	
	Use the student's results to calculate a value, in kJ mol ⁻¹ , for the enthalpy change when one mole of methanol was burned. (The specific heat capacity of water is 4.18 J K ⁻¹ g ⁻¹).	
	(Extra space)	
	(Total 16	(3) marks)

(iii) The equation for the synthesis of methanol is shown below.

a)	By describing the nature of the attractive forces involved, explain why the value for the enthalpy of hydration for the chloride ion is more negative than that for the bromide ion.
b)	The enthalpy of hydration for the potassium ion is −322 kJ mol ⁻¹ . The lattice enthalpy of dissociation for potassium bromide is +670 kJ mol ⁻¹ .
	Calculate the enthalpy of solution for potassium bromide.

(c)	The enthalpy of solution for potassium chloride is +17.2 kJ mol ⁻¹ .	
	(i)	Explain why the free-energy change for the dissolving of potassium chloride in water is negative, even though the enthalpy change is positive.
		(Extra space)
		(LXII a Space)
	(ii)	A solution is formed when $5.00~{\rm g}$ of potassium chloride are dissolved in $20.0~{\rm g}$ of water. The initial temperature of the water is $298~{\rm K}$.
		Calculate the final temperature of the solution.
		In your calculation, assume that only the 20.0 g of water changes in temperature and that the specific heat capacity of water is 4.18 J K ⁻¹ g ⁻¹ .

(3)

(5) (Total 13 marks)